Specification and Modelling of Distributed Systems

R. Maye, A. S. Bavan and G. Abeysinghe
School of Computing Science
Hendon Campus
Middiesex University

The Burroughs

London NW4 4BT

United Kingdom

{r.maye, s.bavan, g.abeysinghe}@mdx.ac.uk

Abstract

The paper describes a new approach to specify
distributed programs using a diagrammatic notation
(NMDS) and implementing them wusing an
asynchronous message passing language (LIPS). The
approach adopled here is to define a network of
. dedicated communication channels for dala exchange
in LIPS-compliant programs; thus promoting portability
between different computing platforms. The NMDS
expresses distributed specifications without ambiguity
in a clear and concise manner. Apart from providing a
clear picture of the intended system it also fits in with
the syntax and semantics of the LIPS language thus
making it easier to translate the specification into LIPS
programs. One of lhe major advantages of using
NMDS as a specification tool with LIPS is that reverse
engineening of LIPS programs can be achieved without
significant overheads.

Keywords:
Distributed Systems, Guarded Processes, Role Activity
Diagrams, Process Modeling

1. Introduction

Successful implementation of any software demands
that the design and implementation satisfy the user
requirements reliably. This means that the choice of
design tools and the implementation language must be
carefully chosen in such a way that the design tool is
able to clearly express the system and the language is
able to translate the design unambiguously. Ideally,
there should be a clear corespondence between lhe
design and the implementation so that there is no
compromise when translating the design into code.
This will not only guarantee a cormrect system but also
ease the burden on the maintenance process that
follows it. A reliable design technique is the one that
unambiguously and clearly represents the intended
syslem in such a way hat it lends to verification and
modifications. In addition one would expect this
representalion to promote elicitation so that one can
leam more aboul the system with the view to refine it
to produce a more efficient representation as well as
ease the lask of maintenance. On the other hand, if

the chosen implementation language is compatible in
style, structural characteristics, and functional
characteristics, the implementation task will not only be
easier but also more likely to be efficient and less
prone to errors. In the case of distributed systems,
even though there are a number of good
implementation languages [1, 2, 3, 4] there is a severe
shortage of design techniques outside the
mathematically based formal techniques such as CSP
I5, 6) and CCS [7] and other similar systems. Since
these formal techniques require a good understanding
of mathematics most of the designers are discouraged
by them. This paper presents possible solutions to
both of these problems by presenting a diagrammatic
notation for specifying distributed processes, NMDS,
and a language for implementing parallel and
distributed systems (LIPS) which easily translates the
diagrammalic notation into implementation code.

Amongst the available design tools based on graphical
notations, Petn nets {8, 9, 10] and RADs [11, 12] can
be considered to be superior in their ability when it
comes to modelling / expressing distributed systems.
These two methods are very efficient at process
modelling, but they are not good at expressing
distnbuted computations, where the system consists of
multiple communicating processes. This has motivated
us to develop a graphical notation based on Role
Activity Diagrams that has the required features for
expressing distributed processing in a manner that is
not only unambiguous and clear but can also be
translated into formal specifications and LIPS
programs, thus lending itself to verification.

In section 2 we present an overview of the LIPS
language which inspired the development of NMDS. In
section 3, we describe the NMDS nolation and
ilustrate its use with examples. Finally, we present our
conclusion in section 4.

lI. Overview of LIPS (Language for Implementing
Parallel and distributed Systems)

A LIPS program consists of interconnected nodes,
where 8 node refers to an instanliation of a node
definition. A program in LIPS is specified in two parts:

J. Diaz de Leén, G. Gonzalez, J. Figueroa (Eds.): Avances en: Cienclas de la Computacién, pp. 1-19, 2003.

© IPN, México 2003.

112 R. Maye, A. S. Bavan and G. Abeysinghe

* a network definition part that describes the
topology of the network of nodes

e a node definition part that defines the
computational steps in a node

A. Network Definition

The network definition describes the lopology of the
program by naming each node in the program and its
relationships (in terms of input and output data) to
other nodes in the system. This is achieved through
the use of link statements. There are two types of link
statements, namely connect and rep; which are
available for specifying the connectivity of a node in a
program. The rep stalemenl is purely a short hand way
of describing similar link statements and is therefore
omitted from this paper for brevity. The syntax of the
connect statement is as follows:

(node_label) :connect node_name (input
list) -> (output list})

An example of a connect statement that links two input
channels, a and b to a node that executes process P
with a node label 7 and produces one oulpul on
channel ¢ is as follows (see figure 2):

[7) :connect-P ((a, b)) -> ([c])

The square brackets are used to group data belonging
to a particular data type or category.

Using connect statements, one can build networks of
any complexity. The connect slatements allow a
dataflow graph to be built for a problem without having
to womy about the specification of computalion at
network level. This promotes good design practice by
molivating the programmer to produce the target
solution model at a higher level of abstraction using
communication as the framework; thus divorcing
compultation from it.

B. Node Definition

In giving a definition of a node we appeal to the notion
of a guarded process which we shall define shortly. A
node, in the LIPS language, consists of one or more
qguarded processes and is specified as a funclion with
the foliowing syntax.

node node_name (inputs) -> (outputs)
(
declarations;
guarded_process_1

guarded_process_n
)

The elements of the input/output list represe
virtual input/output channels through whichmas"”u
messages are sent and received by thg

declaration used within a given function 83,
function. 's local o

A guarded process consists of a gQuarg
associated body. The guard is a list of chan ang
zero or more slalus flags. The body uses dala"'eis

in the guards and processes them accordin de”'"eq
given specification. There are 2 other special
guards, an initialising guard which only give.
values to status flags and variables, and 3 SIar:
which marks the entry point of execution ,'Mu
system. In the case of two or more guardeg P o
being eligible for execution, only one is o Sey
randomly. The input channels in different gy, rds
mutually exclusive. This allows the avoida
ambiguity in selecting a process for execulion
typical guarded process has the following synlax,

(input_condition]) => (statements)

For example, the following guarded process evalya
y only when all the input channels, x1, x2, and =
contain new and unused data.

(x1, x2, x3} => (y = 2*°X1 + 3*x2 - x3;)

Complex input conditions can be constructed
logical and special operators. A process is defined
using C language stalements. Transfer of data v
channels is achieved by simple assignment of va'ys
to variables that represent virtual channels.
divorces the communication from computation
takes away the burden of dealing with deadlock
the programmer.

jil. Notation for Modelling Distributed Systems
(NMDS)

Traditionally, diagrammatic design tools are prefered
instead of formal specification techniques such as (3
{5. 6) and CCS [7] for modelling purposes. This
mainly because of the fact that the latter requires
good understanding of mathematics and process
algebra. This naturally lead to the development
number of diagrammatic techniques for modelliing
of data, flow of control and various relationsh
between objects. Most software engineers find it eases
to construct their design and able to convey
information about structure and logic of the syste?
using these diagrammalic approaches. On the

Specification and Modeling of Distributed Systems 113

hand, when modelling distributed systems and
algorithms, most diagrams lack the ability to succinctly
reveal the concumency that is inherent in these
systems and show the communications between
processes. Exceptions to this belief are two
candidates, Role Activity Diagrams (RADs) (11, 12}
and Petri nels (8, 9] which provide a clear way of
modelling processes and inleraclions between
processes.

Role Aclivity Diagrams have a number of
characteristics that makes it pariculady suited for
modelling distributed processes compared to other
existing diagrammatic representations we have
studied. These include:

« Relatively few symbols and relaxed rules in RADs
enable us to construct accurate diagrams with
relative ease.

e They are state based diagrams and so have a
formal background. Mapping RADs to CSP has
glready been demonstrated [13].

e They have the ability to express the concept of
interaclions between processes and thus allow the
designer to specify the communications between
processes clearly.

+ Concurrent processes can be modelled using the
dangling and simultaneously executing threads.

Despite their benefils, Role Activity Diagrams have a
number of weaknesses when used for modelling
distributed processes based on lips. These include:;

Allinteractions are synchronous {blocking send).
Have no facilities for specifying detailed message
passing as the inleraction is specified at abstract
level. This can hide important details of the
communications between processes.

e There is no concept of a guard as represented in
LIPS, and modelling mutually exclusive threads
can make the model complex.

Because of lhe alorementioned weaknesses, we
Initially incorporated extensions to tighten the rules for
using interactions. This exercise not only produced a
sel of confusing notations but also removed the
intuitive trait of RADs. This lead to the development of
our own notation, NMDS, using the principles and
symbols of RADs as the basis. NMDS was specifically
developed to model the main concepts of distributed,
guarded processes, with much stricter rules.

A node is represented by a rounded box, as are roles
in RADs. Guards within a node are represented by a
rectangle containing all the prerequisites for that guard
to become active as shown in Figure 1, with the

adjoining process leading from it. The symbol ((J
represents a buffered receiver, and ® represents a
status flag.

(WL
(O mse2

Figure 1: A guard

(® statet =true

This can be perceived as being similar o the
mathematical representalion of a guard using set
theory, in which the same guard given in Figure 1 may
be given as the unordered sel: (msg1, msg2,
state1=true)

The start and initialising guards are represented by
labelled boxes as shown in Figure 2.

[Initiallser | | Start |

Figure 2: initialiser and start guard notation

A process associated with a guard may consist of
actions, sending of messages and the changing of
status flag values and can be specified using the
foliowing symbols:

[l Pecform some scion Performs actions described
by the accompanying label

Send a message Sends a message. This is
accompanied by a label
explaining what or why.

(] A buftfered receiver

(® statet = faise A status flag and a label with

its value,

To specify the control flow, we use the following
constructs:

V77

Choice operator. Identical to the RAD notation. There
must be a minimum of two possibilities.

_—

State Label. Identical to the RAD notation. State labels
are used to label any slale along the process flow.

114 R. Maye, A 5. Bavan and G. Abeysinghe

Although it is only necessary to limit the scope of a
named state to the comesponding guarded process, it
has been found that it is less confusing to the user if
the scope spans the entire node, thus each state label
shouid be unique to the corresponding node.

e

Jump. The flow of execution is redirected to the state
given, It allows for the construction of iterations.

®

Terminate. This indicales the completion of the entire
system, Not all systems do terminate, and so this
symbol is not mandatory.

4

End of a guarded process. The execution of the
current guarded process ends, and thus the next
eligible guard is chosen,

To demonstrate the notation, we present an example
that is designed using the RAD notation and the
NMDS notation to show the improvements that can be
achieved by using our notation. In our example, we
use the Simpson’s rule to calculate the area under the

curve: (4 / (1+x2))(1) within an interval of {0-1]. The
network consists of three types of nodes, “Host" which
issues the work to the distributed nodes and collects
the result; “Area” which calculates the area of a slice
using its width (ww) and its height —(calculated using
the segment number kfx]) and "Sum” which adds all
the areas of the segments to produce the total area.
The topology of the system is as shown in Figure 3.

Figure 3: LIPS network for Simpson's rule

The RAD representation given in
Figure 4 uses two small additional symbols

normally found on Role Activity Diagramshal o

) oy
been included to darify the situation: Y havy
Hout Arvaix)
r N ™
".“4 -
Sorsd Bugewrs e - - Ot Bogmant b

=

e B G-Q...

T oy

) =)

Figure 4: a RAD notation for the Simpson's rule

e The role "Area” has been parameterised, it jg
named “Area(x)". In each real instance of the
Area(x), x is replaced with a unique value. Sq
example, if there were three instances of A,
then they could be named Area(1), Area(2)
Area(3) respectively.

e Interactions may be parameterised if a number
unique messages are being senl of received,
example, segment(x) indicates that unig,
segment value is sent to each instance of nogs
area, and result{x) indicates that the

" calculated by each instance of node area
received by node sum.

Even without these nuances, Role Activity Diagrams
would seem perfectly capable of modelling distributed
processes. Guarded processes, however, are mor
than jusl distributed processes.

Figure 5 shows the NMDS notation of the Simpson's
rule. Although similar to

Figure 4, we believe the new notation provides a much
less ambiguous representation of the system. It
makes a very clear dislinction between the guards
prerequisites and the guarded processes themselves.

Note also the use of the dot notation: the fan-out

and the fan-in receive D Fanning-o‘ut_
fanning-in is the process of sending or receving
number of unique messages, typically achleve_d
through iteration, as shown by the for-each construct 8
in the RAD example given in
Figure 4. This is different to the normal send, such
the sending of the width message, as although

Specification and Modeling of Distributed Systems

message may have multiple recipients, only 1
message is broadcast.

Most
ﬁ_—\ Arvatn)
Bars Wesra = {(J e
Bt Bagrart —— {(] seweet

Cotcuseme Arva of
o

Berd arenfs] it
Aema [} ——

........t

Figure 5: NMDS notation for Simpson's rule.

V. The need for NMDS

NMDS was developed after unsuccessful attempts to
model guarded distributed systems using Role Activity
Diagrams (RADs). RADs is not designed to express
mutually exclusive processes and in order to mode!
such a system requires the inclusion of a framework to
ensure the mutual exclusiveness. Essentially, this
implies that the modeller has to concem themselves
with the runtime system rather than being able to
abstract purely to the logic of the program itself.

One of the major difficulties was in the representation
of the guard. It is important to note that a guard is a set
of preconditions such as the precondition concept in Z
nolation [14] and does not form part of the process
logic. RADs offer no way to divorce the two concepls,
which makes models hard to understand,

Although RADs provide ways to represent interactions
involving multi-processes it is Implicit that these
interactions are synchronous. This counteracts to the
concurrent behaviour we aim to achieve in distributed
sysiems creating bottlenecks. In guarded distnbuted
systems, we send and receive asynchronously. For
example, a sender of a message should not be bottle
necked by the behaviour of the raceiver. Such
behaviour can be modelled with RADs by introducing
an unbounded buffer at each receiver, but this makes
diagrams cumbersome.

Our first attempt to rectify the problems was to extend
the RAD notation, by introducing a way to model the
guarded process as dangling threads and impose
stricter rules on the use of the send and receive
symbols. We also created new symbols to represent

115

buffered receivers, but the resulls were ambiguous
and complicated.

NMDS was created as a new notation that would be
based upon the notalion of RADs, bu} be significantly
different in order to specifically model disiributed
guarded processes.

V. Conclusion

This paper has attempted to describe a
diagrammatical design notation called NMDS and the
parallel and distributed language LIPS, on which the
NMDS is based. NMDS is also based on the principles
of RADs and was specifically designed to design
parallel and distributed systems. Using an example in
section 3, we have demonstraled that the NMDS
approach is better at expressing concurrency and
modelling guarded processes than RADs. The main
molivation behind the development of NMDS is to
produce a design tool that will not only express
concurrency unambiguously, but also downward
compalible with the LIPS Janguage so that
implementation of the design can be achieved easily
without losing any information in the design. As seen
in our example, NMDS also managed to caplure the
structural and logical characteristics that are built in to
the LIPS language.

It is intended to extend our work in this area by
producing an animated version of NMDS for
verification purposes prior lo implementing in LIPS
code. The work is also underway to produce software
that would translate NMDS based design into CCS and
CSP to aid verificalion.

References

[1] G. R. Andrews and R. A. Olssen, “The SR
Programming Language: Concurrency in Practice®,
Benjamin-Cummings. 1993.

[2] H. E. Bal and M. F. Kaashoek, “"ORCA: A Language
for Parallel Programming of Distributed Systems”,
IEEE Transaction on Software Engineering, 18(3),
pp190-205.1992.

[3] J. Kerridge, "OCCAM programming: A Practical
Apprcach®, Blackwell Scientific Publication.1987.

[4] W. Gropp, E. Lusk and A. Skjellum, "USING MPI
Portable Parallel Programming with Message Passing
Interface”, Pub MIT Prass, 1994.

[5! C. A. R. Hoare, “Communicating Sequential
Processes”, Prentice-Hall. 1985.

{6) A. W. Roscoe, "Theory and Practice of
Concurrency”, Prentice Hall. 1998.

[7]1 R. Milner, “Calculus of Communicating Systems”,
Proceedings of the LNCS, Springer Verlag. 1992.

116 R. Maye, A. S. Bavan and G. Abeysinghe

[8] J. L. Peterson, "Petri Net Theory and the Modelling
of Systems". Englewood Cliffs: Prentice-Hall. 1981.
(9] W. Reisig, "Petri Nets: An Introduction”, Volume 4
of EATCS Monographs in Theoretical Computer
Science. Berlin, Springer-Veriag, 1985.

[10} W. Reisig and G. Rozenberg, “Editors Lectures on
Petri Nets Ii: Applications”, Volume 1492 of Lecture
Notes in Computer Science. Berlin: Springer-Veriag,
1998.

[11] M. A. Ould, “Business Processes, Modelling and
Analysis for Re-engineering and improvement®, John
Wiley & Sons, 1995.

[12] M. A. Ould and C. Roberts, *Modelling Iteration in
the Software Process”, Procs. Third Intemational
Software Process Workshop, Breckenridge, Colorado,
USA. IEEE Computer Society Press. 1986.

[13] G. K. Abeysinghe and K. T. Phalp, “Combining
Process Modelling Methods, Information and Software
Technology”. Elsevier Science. 1997.

[14] A. Z. Diller, *Z An introduction to formal methods®,
John Wiley & Sons, 1990

